Note on Commutative Regular Ring Extensions of Rings
نویسندگان
چکیده
منابع مشابه
Commutative Regular Rings without Prime Model Extensions
It is known that the theory K of commutative regular rings with identity has a model completion K . We show that there exists a countable model of K which has no prime extension to a model of K'. If K and K ate theories in a first order language L, then K is said to be a model completion of K if K extends K, every model of K can be embedded in a model of K , and for any model A of K and models ...
متن کاملA Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
متن کاملOn Some Properties of Extensions of Commutative Unital Rings
Throughout the text, let R be a commutative ring with identity (often called a commutative unital ring) and with multiplicative group of units R∗. Likewise, let f(x) = a0x +a1x n−1+ · · ·+an−1x+an be a polynomial of the variable x over R such that a0 ∈ R∗. Traditionally, R[x] is the ring of all polynomials of x over R; thereby f(x) ∈ R[x]. For an arbitrary but fixed element α, suppose f(x) is t...
متن کاملON COMMUTATIVE GELFAND RINGS
A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...
متن کاملCommutative Regular Rings with Integral Closure
First order conditions are given which are necessary for a commutative regular ring to have a prime integrally closed extension. If the ring is countable these conditions are also sufficient. In [8] an example was given of a commutative regular ring with no prime model extension to a commutative integrally closed regular ring. In this paper we give (in §2) first order conditions which are neces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy
سال: 1970
ISSN: 0021-4280
DOI: 10.2183/pjab1945.46.904